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Abstract. We qualify a claim made in [AM21], regarding the dimensions in which all orientable

manifolds admit spinh structures, with a compactness assumption, and comment on when this as-

sumption can be removed.

In [AM21], the present authors made the following statement ([AM21, Theorem 1.3], [AM21, Corollary
3.10]): Every orientable manifold of dimension ≤ 7 is spinh.

Here and throughout, we take all manifolds to be smooth. The argument for manifolds of dimension
6 and 7 invoked Cohen’s immersion theorem [Coh85] in order to obtain a codimension 4 immersion
in Euclidean space, followed by an application of [AM21, Proposition 3.9] that such an immersion
guarantees the existence of a spinh structure. However, in order to apply [Coh85], one should qualify
the statement by assuming the manifolds in question are compact.

In the present corrigendum, we note that the following holds, using only (other) results of [AM21] and
results preceding [Coh85]:

Theorem. The following hold:

(1) Every (not necessarily compact) orientable manifold of dimension ≤ 5 is spinh.

(2) Compact orientable manifolds of dimension 6 and 7 are spinh.

(3) A non-compact orientable manifoldM of dimension 6 or 7 is spinh if and only if W5(TM) = 0.

(4) A non-compact orientable manifold M of dimension 6 or 7 with no elements of order exactly
four in H5(M ;Z) is spinh.

By “no elements of order exactly four” we mean that any x ∈ H5(M ;Z) satisfying 4x = 0 also satisfies
2x = 0.

Proof. Part (1) is already proved in [AM21, p.5] without appealing to [Coh85] as a corollary of [AM21,
Corollary 2.6], which states that the primary obstruction to the existence of a spinh structure on an
oriented manifold is the fifth integral Stiefel–Whitney class W5. This is an integral class of order two
and hence vanishes on all orientable manifolds of dimension ≤ 5. Here and throughout, we use the fact
that the top cohomology (with any coefficients) of a non-compact manifold vanishes, e.g. see [Wh61,
Lemma 2.1]; see also [Br62, Theorem 2] that every (not necessarily compact) manifold with boundary
admits a collar neighborhood of its boundary, and hence it deformation retracts onto its interior.

That compact orientable six–manifolds immerse in R10 is proved in [Hir61, Corollary 9], and hence
they admit spinh structures by [AM21, Proposition 3.9]. Note that the statement of [Hir61, Corollary
9] does not include compactness, though it is clear from the proof that the manifold is assumed to be
closed; the general compact case then follows by taking the double if the boundary is non-empty.
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For compact orientable seven–manifolds M , we use the result listed in the second table of [AtDu72,
p.25] (see also the footnote (1) in loc. cit.), that the only obstruction to a compact seven–manifold
admitting three linearly independent vector fields is the integral Bockstein of w4, i.e. W5. Again,
the result is stated for closed manifolds, and the compact-with-boundary case follows by considering
the double. (Note, for orientable seven–manifolds, W5 is a priori the single obstruction to finding
three linearly independent sections over the five–skeleton.) This class vanishes by [Mas62, Theorem
3]. Hence the tangent bundle of M splits off a trivial rank three bundle, giving an orientable rank four
bundle with the same w2 as TM , and we again apply [AM21, Proposition 3.9]. This proves part (2).

Now let M be a non-compact orientable six–manifold. Since H6(M ;Z) = 0, there are no secondary
or higher obstructions to admitting a spinh structure beyond W5; this establishes part (3) for six–
manifolds. Choose an increasing exhaustion {Mi} by compact manifolds with boundary. For an
abelian group A and integer k > 1, we have the short exact Milnor sequence [Sw17, Proposition 7.66]

0→ lim←−
1Hk−1(Mi;A)→ Hk(M ;A)→ lim←−H

k(Mi;A)→ 0.

From the long exact sequence in cohomology associated to the short exact coefficient sequence

0→ Z ·2−→ Z mod 2−−−−→ Z/2→ 0

we have the following commutative diagram:

0 0 0

lim←−H
5(Mi;Z) lim←−H

5(Mi;Z) lim←−H
5(Mi;Z/2)

H5(M ;Z) H5(M ;Z) H5(M ;Z/2)

lim←−
1H4(M ;Z) lim←−

1H4(M ;Z) lim←−
1H4(M ;Z/2)

0 0 0

·2 mod 2

For each Mi, we have W5(Mi) = 0 by taking the double and applying [Mas62, Theorem 2] (or crossing
the double with a circle and applying [Mas62, Theorem 3] again). Generally for an orientable manifold,
the mod 2 reduction of W5 is w5. From here and by naturality, w5(M) ∈ H5(M ;Z/2) maps to the zero
element in lim←−H

5(Mi;Z/2). By [MiSt74, Lemma 10.3], the term lim←−
1H4(M ;Z/2) vanishes. Therefore

w5(M) must be zero as well. Now, W5(M) ∈ H5(M ;Z) is an element of order two which maps to

w5(M) = 0 by mod 2 reduction. Therefore it is in the image of the map H5(M ;Z)
·2−→ H5(M ;Z).

Since by assumption there are no elements of order exactly four in H5(M ;Z), it follows that W5(M)
must be the zero class. This establishes part (4) for six–manifolds.

Now let M be an orientable non-compact seven–manifold. We will show that the secondary obstruction
to the existence of a spinh structure vanishes, establishing parts (3) and (4). Take an exhaustion {Mi}
by compact seven–manifolds with boundary. If W5(M) = 0, which will for instance be true given
the torsion condition on H5(M ;Z) by the argument above, we can choose a lift of the classifying
map of the tangent bundle M → BSO(7) to E1, the second stage of the relative Postnikov tower of
BSO(4)→ BSO(7),
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BSO(4)

...

E1 K(Z, 4)

M BSO(7) K(Z, 5)
W5

Restricting to the Mi gives a compatible system of lifts to E1. We consider now the secondary obstruc-
tion o(M) to admitting three linearly independent vector fields. This is a class in H6(M ;π5(V (3, 7))),
where V (3, 7) is the Stiefel manifold of 3–frames in R7. We have the following exact sequence of
homotopy groups:

π6(BSO(7))→ π5(V (3, 7))→ π5(BSO(4))→ π5(BSO(7)).

The natural map BSO(7) → BSO is an isomorphism on π≤6, and hence we have π5(BSO(7)) =
π6(BSO(7)) = 0. Furthermore, π5(BSO(4)) ∼= π4(SO(4)) ∼= π4(S3 × S3) ∼= Z/2⊕ Z/2.

Since we are fixing the lifts M → E1 and Mi → E1, and they are compatible, the secondary obstruction
to lifting further to E2 is natural, i.e. o(Mi) is the restriction of o(M).

E2 K(Z/2⊕ Z/2, 5)

E1 K(Z/2⊕ Z/2, 6)

M BSO(7)

Mi

Let us now argue that o(Mi) = 0. We will use [Du74, Theorem 1.1], which gives us that for any
choice of lift to E1 on a closed orientable seven–manifold, the secondary obstruction vanishes. In order

to apply this to Mi, we consider the double DMi. We will argue that the lift Mi
fi−→ E1 (obtained

by restricting M
f−→ E1) extends to a lift DMi → E1. Then, by applying loc. cit., we will have

o(DMi) = 0 and hence o(Mi) = 0.

E1 K(Z, 4)

Mi BSO(7)

DMi

fi

j

First, choose any lift DMi
G−→ E1 of DMi → BSO(7); this exists since W5 vanishes on any closed

orientable seven–manifold. Now, fi and the restriction of G to Mi differ by the action of an element
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x in [Mi,K(Z, 4)] = H4(Mi;Z) (this group acts simply transitively on the homotopy classes of lifts to
E1). Let us denote this by [fi] = x · [G|Mi

].

Now observe that x is the restriction of a class X ∈ H4(DMi;Z). Namely, consider the Mayer–Vietoris
sequence for the double:

· · · → H4(DMi;Z)→ H4(Mi;Z)⊕H4(Mi;Z)→ H4(∂Mi;Z)→ · · ·
The element (x, x) maps to zero, and hence x = j∗X for some X ∈ H4(DMi;Z).

Therefore, if we consider the (class of the) lift X · [G] on DMi instead of [G], by naturality we have
that its restriction to Mi is x · [G|Mi ], i.e. [fi].

Now we have that o(Mi) = 0 for all i. Consider the short exact sequence

0→ lim←−
1H3(Mi;Z/2⊕ Z/2)→ H4(M ;Z/2⊕ Z/2)→ lim←−H

4(M ;Z/2⊕ Z/2)→ 0.

Since H∗(−;Z/2⊕ Z/2) is naturally isomorphic to H∗(−;Z/2)⊕H∗(−;Z/2), the lim←−
1 term vanishes.

Further, since o(M) maps to (o(Mi))i, which is the zero element, by injectivity we have that o(M) =
0. Since M has the homotopy type of a six–complex, the secondary obstruction is also the final
obstruction to admitting three linearly independent vector fields, and we conclude that M admits a
spinh structure. �

Likewise, the statement in the paragraph preceding [AM21, Remark 3.5], that every orientable n–
manifold is spinn−α(n) (where α(n) is the number of one’s in the binary expansion of n) should be
qualified with a compactness assumption. Removing the compactness assumption, we can of course
appeal to Whitney’s immersion theorem to conclude that every orientable n–manifold is spinn−1.
Similarly, compactness should be assumed where appropriate in [AM21, Section 5].

Remark. (1) We record also that there are some inaccuracies in the table of homotopy groups of
Stiefel manifolds in [EDM93, p.1747]. Namely, taking n = 4 and m = 3, 8s−1, 8s+ 3, one sees
from the long exact sequence in homotopy groups, as above, that π5(V (m,m + 4)) – in the
notation of loc. cit. this is π5(V (m+ 4,m)) – is isomorphic to Z/2⊕Z/2, contrary to what is
listed therein.

(2) The primary obstruction to a spinc structure on an orientable manifold is W3, and compact
orientable four–manifolds are spinc. An analogous argument to the above then shows that
non-compact orientable four–manifolds with no elements of order exactly four in H3(−;Z)
are spinc. The four–torsion assumption can be removed in this case [TV], and it is not clear
whether one should expect this in the theorem above.
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